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Abstract. The contribution of spin fluctuations to the temperature and field dependence of the
low-temperature spin susceptibilityχ(T ) of exchange-enhanced paramagnets in finite magnetic
fields is studied on the basis of the Fermi-liquid approach.

It is shown that the proper evaluation of the terms in the free energy that are dependent on
magnetic fieldH results in the appearance of the logarithmic temperature contribution toχ(T ),
the existence of which was predicted earlier in Fermi-liquid approaches only qualitatively. Along
with the logarithmic term, a new significant one which is proportional toT 5/2/H 1/2 has been
found. The latter term can significantly change the usual interpretation of the experimental data
on the magnetic susceptibility in terms of the power series over the temperature and magnetic
field.

The reasons for these contributions not being found in previous considerations are discussed.

1. Introduction

The problem of the influence of spin fluctuations (SF) on the susceptibility of enhanced
paramagnets has been discussed for many years, and a lot of results are available which
provide a good understanding of some features of the observable temperature and field
behaviour over wide temperature and magnetic field ranges. Nevertheless, a number of
discrepancies between theories and experimental data as well as numerous contradictions
between the results of different theoretical approaches have been the subject of much
controversy.

The existence of detailed reviews of these problems (see, for example, [1–3]) permits
us to restrict ourselves here to a brief enumeration of the main difficulties.

The theoretical efforts were directed basically towards the explanation of: (i) the
abnormally strong temperature dependence ofχ(T ) for nearly ferromagnetic Fermi systems
for T � TF (TF is the Fermi temperature), and, especially, (ii) a non-monotonic temperature
behaviour of χ(T ) (in particular, the existence of a maximum in the temperature–
susceptibility curve for Pd, U2C3, CeMn3, etc). The confirmation of the key role of the
incoherent SF in the low-temperature thermodynamics of such materials is the commonly
recognized result of these efforts.

There are two groups of contradicting results concerning the temperature behaviour of
χ(T ). In a number of papers [5–8] it was shown that the SF give rise to ‘doubly enhanced’
T 2-terms in the temperature expansion ofχ(T ) (as compared with the ‘singly enhanced’
T 2-term in Stoner’s theory):

χ(T ) = χ(0)(1 − αS2T 2) (1)
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(here and below the system of unitskB = µB = h̄ = 1 is used, and all values are
normalized toTF ), whereS is the Stoner enhancement factor, andχ(0) = SχP , where
χP is the Pauli susceptibility. According to (1), the characteristic temperature scale for
changingχ(T ) decreases fromTF to TSF = TF /S � TF , and attempts were made to explain
the observable susceptibility maximum either through the effects of the complicated band
structure or through the presence of impurities and defects in samples [9]. The considerations
were performed either in the Fermi-liquid approach [8], or by making use of particular
microscopic models [5–7].

In a series of other works based either on the microscopic approach [1, 2], or on the
general Fermi-liquid theory [4], it was claimed that in the temperature expansion ofχ(T ),
along with the usualT 2-term, a logarithmic term has to be present:

χ(T ) = χ(0)

(
1 − γ SnT 2 ln

T

T ∗

)
(2)

wheren = 1 [4], or n = 3 [1, 2].
Such a temperature dependence can explain the existence of a maximum inχ(T );

however, the problem is still far from being resolved. In a number of works the conclusion
as regards the appearance of logarithmic terms was shown to be erroneous, because when
these terms are carefully collected the total elimination of various ones (the quasiparticle
density of states, effective mass, vertex part etc) takes place [8, 10]. It was also indicated
that the presence of such logarithmic terms must cause divergence ofγ (H) (the coefficient
of the linear-in-T term in the specific heat) asT → 0 [11]. Finally, the interrelation of
these results with the conclusions of the first group of works [5–8] concerning the absence
of logarithmic contributions is not obvious, and the ranges of applicability of these results
are not clear.

In the present work, the Fermi-liquid approach is used to show that at finite magnetic
fields the SF contribution to the free energyF is a complicated function of the parameter
` = 2B/T (where 2B is the energy of the spin splitting), and, therefore, the behaviours of
the thermodynamic characteristics for different temperature regions (` � 1 and` > 1) are
essentially different. That is, in weak but finite magnetic fields (when` > 1 andT � H )
the new temperature contributions arise, and, for` � 1, these can be evaluated analytically.
In the previous works, devoted to SF contributions to the thermodynamic characteristics of
enhanced paramagnets, however, only the case of extremely weak magnetic fields (` � 1)
was considered. We have found the ‘singly enhanced’ logarithmic termT 2 ln T at finite
H , which for H → 0 corresponds to the zero-fieldST 2 ln S-term of Beal-Monodet al [5].
In addition to this term, a new significant contribution to the spin susceptibility, which is
proportional toT 5/2/H 1/2, has been obtained. The width of the temperature range of the
existence of these new contributions is proportional toS—that is, this range may be large
enough for the case of strongly enhanced paramagnets.

The technique for the extracting of the temperature contributions to the free energy
described in the present paper can be used for the calculation of the whole spectrum of
thermodynamic parameters of the enhanced paramagnets at finite magnetic fields.

2. The main equations

In the model of the Fermi liquid, when only the spin part of the interelectronic interaction
approximated by single constant90 is taken into account, the SF correction to the free
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energyδF (M, T ) (M is a magnetization) has the form [12]

δF = 1

2
V

∑
k

∫ 1

0

dλ

λ
λ90〈δm δm〉λk. (3)

Here 〈δm δm〉λk is an averaged square of the spectral density of the SF (in which90 is
replaced byλ90), andk = (k, ω).

By making use of the fluctuation-dissipation theorem, and the expression for〈δm δm〉λk

in the random-phase approximation, and after integrating over the coupling constant in (3),
one can find
1

V
δF = 1

2

∑
k,ω

coth
ω

2T
Im

(
ln(1 + 90χ

zz
0 ) − 90χ

zz
0 +

∑
σ

[ln(1 + 90χ
σ,−σ
0 ) − 90χ

σ,−σ
0 ]

)
.

(4)

Here χzz
0 and χ

σ,−σ
0 are the longitudinal and transverse dynamical spin susceptibilities of

quasiparticles in the absence of interaction, given by

χzz
0 (k, ω) =

∑
p,σ

nσ
p+k/2 − nσ

p−k/2

ω − εp+k/2 + εp−k/2

χ
σ,−σ
0 (k, ω) = 2

∑
p

nσ
p+k/2 − n−σ

p−k/2

ωσ − εp+k/2 + εp−k/2
.

In the latter expression, the following notation is used:ωσ = ω − 2σB, whereσ = ±1
is a spin quantum number; andnσ

p = n(εpσ ) is a Fermi function for quasiparticles with the
energyεpσ = εp + σB.

The transverse dynamical susceptibilitiesχ+− andχ−+ contain explicitly the magnetic
field throughωσ in the denominator of the expressions in the integral (in contrast to the
longitudinal functionχzz). As will be shown below, only this explicit field dependence is
important for the appearance of the new contributions toχ(T ) in the finite magnetic fields,
and therefore we restrict ourselves to considering the transverse SF only from now on.

The following expression for evaluating the magnetic susceptibility will be used:

1

χ
=

(
∂H

∂M

)
=

(
∂2F

∂m2

)
(5)

whence, assumingδF to be a small correction, we get for the contribution of the transverse
SF to the susceptibility

χ(T ) = χ(0)

(
1 − χ(0)

1

V

∂2δF tr

∂m2

)
= χ(0)(1 − χ(0)δ(T )) (6)

where the second term is defined by the following expression:

δ(T ) = 1

V

∂2δF tr

∂m2
= − 8

πχp

∂2

∂B2

∑
σ

∫ ∞

0
dω Nω

∫ ∞

0
dk k2 arctan

(
Im χσ,−σ

−1/F a
0 − Reχσ,−σ

)
.

(7)

Here F a
0 = η(0)90 (η(0) is the density of states at the Fermi level),Nω is the Planck

function, and summation overσ takes into account only transverse SF. The term which is
proportional to

∑
χσ,−σ gives only an insignificant contribution to the temperature behaviour

of the susceptibility and thus is excluded from further consideration.
The expressions (5)–(7) allow us to calculate the SF contribution to the susceptibility

(see [5, 9, 12]).
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3. The temperature dependence ofχ(T ) due to the SF

For the strongly enhanced paramagnets (S � 1) the main contribution to the integrals overk

andω is given by the long-wavelength and low-frequency SF, and this permits us to expand
the dynamical susceptibilities in a series of powers ofs = ω/4k � 1, sσ = ωσ/4k � 1,
k � 1, and to keep only a finite number of terms in this expansion. Forχσ,−σ (k, ω, B)

one can obtain [12]

χσ,−σ (k, ω, B) = 1 − ssσ − 1

3
s(sσ )3 − 1

3
k2 + · · · + i

π

2
s2

(
k − |ωσ |

4

)
2(1 − k) (8)

where the expansion coefficients correspond to a parabolic form of the quasiparticle
spectrum.

Substitution of (8) into (7) gives

δ(T ) = − 8

πχp

∂2

∂B2

∑
σ

∫ ∞

0
dω Nω

∫ 1

|ωσ |/4
dk k2

[π

2
sgn8σ(k, ω) − arctan8σ(k, ω)

]
.

(9)

Here we use the notation

8σ(k, ω) = k

βω
+ 1

2π

ωσ

k

[
1 + 1

3

(
ωσ

4k

)2
]

β = −
(

π

8

)(
Fa

0

1 + Fa
0

)
and the relation: arctanx = (π/2)sgn(x) − arctan(1/x).

The integration overk in (9) can be performed explicitly. However, in the general case
the result will have a complicated form and so we do not write it out here. Let us remark
only that the character of the dependence of this expression onω andB will be determined
by the parameterωσ/(βω). The new contributions which we are interested in arise only at
small values of this parameter—that is, forωσ/(βω) � 1, or, if one notes that the main
contribution to the integral overω arises from the regionω ∼ T , for T � H .

These new contributions are proportional to(ω|ωσ |)3/22(2B − ω) (this term originates
from the first term in the square brackets in (9)) and to(ωσ )3 ln |ωσ |/ω.

For an illustration of these statements, we describe the simplified calculation of these
terms, based on expansion of the arctangent as a series in its argument. Here one must take
into account the possibility of a changing of the character of the arctangent’s expansion at
the pointk∗, where the argument is equal to 1 (in our casek∗ approximately equalsβω).
Thus, the conditionωσ/(βω) < 1 for the appearance of the new contributions corresponds
to the case wherek∗ falls within the range of integration overk.

We can therefore split the region of integration overk into |ωσ |/4 < k < βω and
βω < k < 1, and consider further only the first interval (where arctangent’s argument is
less than 1). Thus, the fluctuation factor (9) may be written in the form

δ(T ) = − 8

πχp

∂2

∂B2

∑
σ

∫ ∞

0
dω Nω

∫ βω

|ωσ |/4
dk k2

{
π

2
sgn

(
k

βω
+ 2

π
sσ

)
− k

βω
− 2

3π

(
1 − 4

π2

)
(sσ )3

}
(10)

where only the terms responsible for the essential contributions to the temperature
dependence of the susceptibility are retained.

Let us now consider the integrals overk from each term in the curly brackets in (10).
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(i) The main contribution to the integral

I1 = π

2

∫ βω

|ωσ |/4
dk k2 sgn

(
k

βω
+ 2

π
sσ

)
(11)

arises atk ∼ k0 =
√

|ωσ |βω/(2π). Taking this into account, we can obtain forI1

I1 = −π

3

(
βω

2π
|ωσ |

)3/2

2(2B − ω). (12)

(ii) The result of integration overk of the second term in (10) is

I2 = − 1

βω

∫
|ωσ |/4

dk k3 = (ωσ )4

45βω
. (13)

Evaluating the contribution fromI2 to χ(T ) one can conclude that no significant temperature
corrections occur.

(iii) The third integral contains the terms which are non-analytical whenH → 0:

I σ
3 = − 2

3π

(
1 − 4

π2

) ∫ βω

|ωσ |/4
dk k2(sσ )3 = 2

3π

(
1 − 4

π2

)(
ωσ

4

)3

ln
|ωσ |
4βω

. (14)

After integrating over ω this expression results in the logarithmic term in the
susceptibility.

If the conditionH � T is satisfied, the value of the integralI2 is much smaller than
those ofI1 andI3, and, therefore, forδ(T ) we can write

δ(T ) = − 8

πχp

∂2

∂B2

∫ ∞

0
dω Nω

(
I1 +

∑
σ

I σ
3

)
. (15)

Differentiating twice with respect toB, and carrying out the simple transformations
with account taken of (12) and (14), we get

δ(T ) = 1

χp

T 2
{1

8
S3/2J1(`) − 2

π4

(
1 − 4

π2

)
(J2(`) − `J3(`))

}
(16)

where

J1(`) =
∫ `

0

dz

ez − 1

z

(`/z − 1)1/2
(17)

J2(`) =
∫ ∞

0

dz

ez − 1
z ln

∣∣∣∣1 − (`/z)2

β2

∣∣∣∣ (18)

J3(`) =
∫ ∞

0

dz

ez − 1
ln

∣∣∣∣z + `

z − `

∣∣∣∣ . (19)

Thus, one can see thatδ(T ) really contains non-analytical (with respect to`) terms. We
note once again that these results (which lead to the new contributions to the susceptibility)
could be obtained without making use of the approximate arctangent expansion, just by
performing the explicit integration overk in the initial expression (9) (using the expansion
(8) for χσ,−σ (k, ω, B) and the condition|ωσ |/4 � k∗ � 1).

Now the behaviour ofδ(T ) andχ(T ) must be analysed in the extreme cases where the
closed form for the new SF terms in the susceptibility may be derived.

(i) ` � 1 (the extremely weak magnetic fields).
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The approximate expressions for integralsJ1(`) andJ2(`) have the forms

J1(`) =
∫ `

0

dz

(`/z − 1)1/2
= π

2
` (20)

J2(`) =
∫ ∞

0
dz

z

ez − 1
ln

1

β2
= −π2

3
ln β. (21)

The numerical analysis of the integralJ3(`) versus` shows that at small̀ (` ∼ 10−3–
10−4) J3(`) behaves as a smooth function of`, being approximately equal to a constant:
J3(`) ≈ constant= A (∼4.7).

Then forδ(T ) we get

δ(T ) = 1

χp

[(
π

8
S3/2 + 4A

π4

(
1 − 4

π2

))
BT + 2

3π2

(
1 − 4

π2

)
T 2 ln β

]
. (22)

Substituting (22) into the expression for the susceptibility, equation (10), we obtain
a result which partially reproduces the contribution obtained in previous work [5] (it
reproduces it totally if the longitudinal SF is taken into account and the quantum approach
rather than the quasiclassical one is used). Thus, it is not the case that we are interested in
here.

(ii) ` � 1 (the finite fields).
For the integralsJ1–J3 the following approximate expressions are valid:

J1(`) =
∫ ∞

0

dz

ez − 1

z3/2

`1/2
= 3

4

√
π

2
ζ(5/2)

(
T

B

)1/2

(23)

J2(`) = 2
∫ ∞

0
dz

z

ez − 1
ln

`

βz
= −π2

3
ln

T

T ∗ (24)

J3(`) = 2

`

∫ ∞

0
dz

z

ez − 1
= π2

6

T

B
(25)

whereζ(x) is the Riemann zeta function, andT ∗ is a characteristic temperature (T ∗ ∼ B).
So, for δ(T ) we have

δ(T ) = 1

χp

[
3

32

√
π

2
ζ(5/2)S3/2 T 5/2

B1/2
+ 2

3π2

(
1 − 4

π2

)
ST 2 ln

T

T ∗

]
. (26)

Therefore, the temperature expansion of the susceptibility for` � 1 has the form

χ(T ) = χ(0)

[
1 − 3

32

√
π

2
ζ(5/2)S5/2 T 5/2

B1/2
− 2

3π2

(
1 − 4

π2

)
ST 2 ln

T

T ∗

]
. (27)

Here theT 2-term from J3(`) was introduced within the logarithm renormalizing the
temperatureT ∗. It should be noted that theS2T 2-contribution toχ(T ) obtained by Beal-
Monodet al [5] is really present in the temperature expansion both for` � 1 and for` � 1,
but we have no need to reproduce this term in our calculations (as already mentioned, to
obtain it we must take into consideration the longitudinal SF and finitek). This T 2-term
will be written down in the final expressions only. We underline also that ourST 2 ln T -term
(` � 1) originates from the same free-energy terms as produce theST 2 ln S-term obtained
by Beal-Monodet al [5] for B = 0.

At the end of this section we additionally emphasize that these new contributions were
not revealed in the previous works since there only the case of extremely weak magnetic
field (̀ � 1) was considered.
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4. Discussion

We have established that the temperature dependence of the susceptibility of exchange-
enhanced paramagnetsχ(T ) has the form

χ(T )

χ(0)
=


1 − αS2T 2 whenT � H or T � 2SH

1 − αS2T 2 − δS2 T 5/2

H 1/2 − γ ST 2 ln
T

T ∗ whenH � T � 2SH

(28)

whereα = 7.7π2/24 [5, 6], δ = (3
√

π/64)ζ(5/2), andγ = (2/3π2)(1 − 4/π2).
So, the consideration of the case of the finite magnetic field has resulted in the appearance

of the ‘singly enhanced’ logarithmic contribution toχ(T ), and it is in agreement with a
qualitative result of Misawa [4] obtained with the help of the phenomenological Fermi-
liquid approach. Moreover, this logarithmic contribution exists only at finite temperatures
(T � H ), which make it possible to avoid the problem indicated by Beal-Monod [11] (the
singularity ofγ (H) = Cv(H)/T asT → 0).

Another important result is that the logarithmic term is accompanied with a more signif-
icant contribution, proportional toT 5/2/H 1/2. The coefficient of this term is proportional to
S5/2 (while the coefficient of the logarithmic term is∼S), and this is why the logarithmic
term can become comparable with theT 5/2-term only in a case where the temperature
T ∗ is extremely high (T ∗ ∼ expS, S � 1), but this seems to be improbable. This
means that for the range of temperaturesH � T � 2SH the T 5/2/H 1/2-term plays the
main role. The sign of this term is the same as that of the usualT 2-term due to the SF,
and this means that this term cannot be responsible for the non-monotonic behaviour of
the susceptibility. Nevertheless, more realistic parametrization of the Landau function (e.g.,
keeping at least two Fermi-liquid constants) can result in a change in sign of theT 5/2/H 1/2-
term. For instance, for liquid3He the making use of the second Fermi-liquid parameter
F 1

a significantly changes the magnitude of the coefficient of the logarithmic term in the SF
specific heat and allows one to explain its temperature behaviour quantitatively [13].

But even in the present model this term can significantly change the character of the
temperature dependence ofχ(T ). Writing out the expression for the susceptibility for the
rangeH � T � 2SH in a form convenient for comparison with experimental data, we get

χ(T ) − χ(0)

χ(0)
= −b[χ(0)T ]2 (29)

where

b = −4

9
α

{
1 + δ

α
S1/2

√
2T

B

}
. (30)

This leads us to the conclusion that at finite fields (` � 1) and for strong paramagnets
(S � 1) the new contribution appreciably alters the magnitude ofb as well as giving rise to
the strong temperature and field dependence of this factor, whereas the results of previous
works on the SFT 2-term imply thatb has only weak temperature (due to the terms of the
next order inT 2) or field dependence. So, it may become necessary for strong paramagnets
to take into account this dependence for the correct interpretation of the experimental data
on the temperature dependence ofχ(T ) (and this is the subject of another study based
on re-examining numerous existing experimental data for different compounds to extract
evidence for or against this interpretation).
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